Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae.
نویسندگان
چکیده
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of lactic acid. Unexpectedly, the cyb2Delta reference strain, used to avoid aerobic consumption of lactic acid, had a specific growth rate of 0.25 h(-1) in anaerobic batch cultures containing lactic acid but only 0.16 h(-1) in identical aerobic cultures. Measurements of aerobic cultures of S. cerevisiae showed that the addition of lactic acid to the growth medium resulted in elevated levels of reactive oxygen species (ROS). To reduce the accumulation of lactic acid-induced ROS, cytosolic catalase (CTT1) was overexpressed by replacing the native promoter with the strong constitutive TPI1 promoter. Increased activity of catalase was confirmed and later correlated with decreased levels of ROS and increased specific growth rates in the presence of high lactic acid concentrations. The increased fitness of this genetically modified strain demonstrates the successful attenuation of additional stress that is derived from aerobic metabolism and may provide the basis for enhanced (micro)aerobic production of organic acids in S. cerevisiae.
منابع مشابه
Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae
Melatonin (N-acetyl-5-methoxytryptamine), which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces cerevisiae as an eukaryote model to evaluate the possible effects of melatonin supplementation on endogenous cellular defense systems by measuring its effects on various cellular targets. Cell viability, i...
متن کاملRoles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.
Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Ya...
متن کاملCadmium-induced oxidative stress in Saccharomyces cerevisiae.
The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in t...
متن کاملImportance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.
Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T....
متن کاملExpression of Mitochondrial Cytochrome C Oxidase Chaperone Gene (COX20) Improves Tolerance to Weak Acid and Oxidative Stress during Yeast Fermentation
INTRODUCTION Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars released by the pre-treatment of lignocellulosic material into bioethanol. Pre-treatment of lignocellulosic material releases acetic acid and previous work identified a cytochrome oxidase chaperone gene (COX20) which was significantly up-regulated in yeast cells in the presence of acet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2009